📢 Gate广场 #MBG任务挑战# 发帖赢大奖活动火热开启!
想要瓜分1,000枚MBG?现在就来参与,展示你的洞察与实操,成为MBG推广达人!
💰️ 本期将评选出20位优质发帖用户,每人可轻松获得50枚MBG!
如何参与:
1️⃣ 调研MBG项目
对MBG的基本面、社区治理、发展目标、代币经济模型等方面进行研究,分享你对项目的深度研究。
2️⃣ 参与并分享真实体验
参与MBG相关活动(包括CandyDrop、Launchpool或现货交易),并晒出你的参与截图、收益图或实用教程。可以是收益展示、简明易懂的新手攻略、小窍门,也可以是现货行情点位分析,内容详实优先。
3️⃣ 鼓励带新互动
如果你的帖子吸引到他人参与活动,或者有好友评论“已参与/已交易”,将大幅提升你的获奖概率!
MBG热门活动(帖文需附下列活动链接):
Gate第287期Launchpool:MBG — 质押ETH、MBG即可免费瓜分112,500 MBG,每小时领取奖励!参与攻略见公告:https://www.gate.com/announcements/article/46230
Gate CandyDrop第55期:CandyDrop x MBG — 通过首次交易、交易MBG、邀请好友注册交易即可分187,500 MBG!参与攻略见公告:https://www.gate.com/announcements
从用户视角拆解AI产品:Character & Tool
**来源:**三维漫游
作者:梁家升
什么是AI产品的壁垒? -- 从Jasper.ai裁员说起
周三一起床看到新闻,说Jasper.ai裁员了。
“这也太快了吧,本来以为还能撑一会” -- 我跟好友都发出感慨。
我对Jasper.ai的关注,最初源于一篇文章(Jasper.ai 15 亿美元的 GPT 套壳?有护城河么?)。Jasper这个公司特别有意思,在一众AI新贵中鸡立鹤群:一群小伙子,其中一个Ph.D都没有,没有星辰大海的梦想,也没有力大砖飞的决心,一心想着搞个公司赚钱 -- 真实用主义。早期做了个「营销服务分销公司」,顾名思义,提供的是营销服务,但做法是分销给外包干 -- 表面上是营销服务,实际做的是Agent,核心能力是推销。不得不说,有时候一个公司的基因就是出生的时候写下的(笑
后来的发展路线非常互联网:做AI营销写作,靠早期的社群运营拿下宝贵的测试用户,然后顺着用户喜好一步步迭代 -- 任鑫说,这是脚踩西瓜皮,滑到哪里算哪里。所有满怀主观意志的尝试,他们都做崩了;所有顺势而为的小步迭代,意外地都做得还不错。
在AI爱好者里,我是其中对Jasper.ai过度关注的类型。究其原因,是我觉得它对我而言是建立对于AI应用认知体系的一个绝佳的例子:
我觉得AI时代ToC产品的killing feature的核心是:「高需求 + 有壁垒」;而其中“有壁垒”是目前最难分析的部分,什么样的AI应用有壁垒呢?哪些是短期/长期壁垒呢:
这么一层层想,越想越乱,没有结果。
回到Jasper.ai这个例子,它做到了什么呢?
不得不承认,目前Jasper.ai做到的,只是一个科技公司1~3个月工作量的成品:ChatGPT套壳 + 工作流拆解型UI + engineering;另外还赌对了行业窗口期,以及在窗口期上的进一步加码(客户拓展和营销)。在AI时代,这确实不是什么牢固的壁垒。但我之前认为它的工作流拆解能力是可贵的 -- 这代表着团队对「营销文案」这个行业的理解足够深刻,这可能足够支撑他们用一段时间积累一批用户,然后建立起数据飞轮,再建立下一步更牢固的数据壁垒:
这一套商业模型:高毛利吃行业红利 —> 重营销推广 —> 占领用户心智(预算) —> 打击竞品/垄断;在传统行业,飞轮转起来了就所向披靡。
但现在不一样了,Jasper这周裁员了 -- 因为ChatGPT的普及相当于D2C品牌直销,Jasper这种中间商没有活路。
拆解AI应用的一个思路:Character & Tool
最近有两个最热门的AI App上架了(除了ChatGPT),国内是文心一言,国外则是character.ai;两个产品本质上都是「货架型」产品 -- 将不同调试下(主要还是 engineering)的LLM通过货架陈列的方式放在用户面前,让用户挑选使用:
Character的核心是性格,提供的是情绪价值和个性化;而Tool的核心是功能,提供的是效率价值的非标化。情绪和性格千变万化,所以Character会很多 -- 截止到3月,Character.ai上已经有270万个角色;但功能是有限的,核心的大需求就那么几个,分化出的细分场景大都有共同性,所以Tool重质而不重量。
这个分类很有意思,也十分自然:大家都说LLM改变的是人机交互模式,将原本的Database和Code都变成Model,将GUI变成LUI…但是从用户视角看,实际上产品是从 Tool —> Character + Tool -- 原本我要借助工具完成的任务,现在可以交给一个人来做了。
恰好最近浅读了一些Tool learning相关的文章(链接),看到了AI作为大脑来使用Tool的潜力。同时又想起了之前和好友讨论过LLM, Agent和Plugin的联系,脑子里突然就开始头脑风暴自问自答,以下全是暴论,欢迎指正:
对于任意一个AI产品,可拆解成 Character 和 Tool:
Q: LLM一定是Character吗?
A: 不一定,如果某一个大模型做到了完美的压缩和解压,那么“性格”的主要来源就变成了围绕LLM做的Agent,以及指令工程,这样LLM就是Tool了。就像从目前看,ChatGPT是Character,因为相对于Infection-1来说,它博学、冷漠无情、面面俱到又毫无重点、理性至极;但长期看,ChatGPT不一定不能拥有Infection-1的情感能力。
Q: AI产品的壁垒在哪里?
A: 短期看,Character和Tool都能变成壁垒,甚至Tool是主要壁垒。但长期看,AI产品的壁垒主要在Character,Tool会被收到Character里面被Character使用。
Q: 人类就不用Tool了吗?
A: 不是,人类会用Tool,但会在GUI交互下使用,和现在差不多。LUI交互下的Tool都会收到Character里,因为LUI满足的是非标的服务性需求,人们在挑选服务的时候往往不止注重功能性,还考虑与对方的契合度(例如找育儿嫂、聘请服务员、购买咨询服务),所以Character + Tool > Tool。
Q: Character的差异化能力有哪些?
A: Character的终极形态是个人管家。因此首要能力是个性化,个性化的核心是模型记忆力,记忆力够长就能学习用户性格和喜好。其次是鲜明的性格/三观,用于积累早期用户,类似于当代互联网社区的“社区调性”。Character.ai的创始人Noam Shazeer 说:“如果试图呈现一个让所有人都喜欢的公众角色,那这个角色一定会是无趣的”。
这里再深一层的壁垒是私有化的数据,能构建有差异化的“角色”。但拉长时间数据的优势也会被磨灭,毕竟产品一旦上线之后私有化数据这个概念也不存在了,所以更重要的是基于性格来构建数据飞轮的方法。
Q: Tool的差异化能力有哪些?
A: 短期看,Tool的差异化能力在底层技术,比拼的是硬技术能力,目前Midjourney, Runway, Adobe Firefly都是例子;但长期看,技术带来的工具产品一般是两个结局 -- 技术成本高的会实现垄断(如微软办公套件、Adobe套件等),技术成本低的会成为烂大街的基础能力(如计时器、计算器等),百家争鸣的机会不大。
Q: 如果要做ToC产品,做Character还是做Tool?
A: 对于大多数人,做Character比较好。因为Character更加多样,需求更加长尾,有更多产品能活下来,活下来后守住壁垒也更容易。做Tool要有绝对的硬技术能力,以及垄断市场的能力。
Q: 最后来回答,长期看什么是AI产品好搞的路线?需要什么条件?